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ON A NEW CLASS OF MOTIONS OF A SYSTEM OF HEAVY HINGED RIGID BODIES* 

C.V. CORR and V.N. RUBANOVSKII 

A chain of heavy rigid bodies with one or both ends fixed is considered. 

If the arrangement is such that each hinge is at the point of intersection 

of the perpendiculars to the planes of circular section of the central 

gyratory ellipsoids of adjacent bodies, the equations of motion of each 

body can be shown to admit of a Hess invariant relation /l/. A geometrical 

interpretation of the motion is given when such invariant relations exist. 

The simplest classes cf motion are considered, and the conditions for 

semiregular precessions to exist are indicated. 

1. We consider the motion of a system of heavy hinged gyrostats S,,S,, . . ..S. (n > 1) in 
a uniform gravitational field,inwhich the first gyrostat S, has a fixed point O,, while the 

rest are successively interconnected as a chain by means of ideal spherical hinges o,, . . .t 0, 
in such a way that the centre of mass of each body andthehinges connectingittothe adjacent 

bodies (or to the fixed point) are collinear. The system is then a chain with one fixed end. 

We can also consider a similar chain with two fixed ends, in which case we assume that the 
last body s, has a fixed point O,,,,, and that its centre of mass and the points 0, and O,,,, 
are collinear. 

We introduce the fixed system of coordinates OrmY& with z axis having the unit vector 

v directed vertically upwards, and the moving systems of coordinates Ci"li"a%si with origins 

at the centres of mass Ci of the bodies and axes directed along their principal central axes 

of inertia. Here and throughout, i = 1, . . ., n. 
Let ei be the central tensor of inertia of the i-th body with diagonal elements J,“< 

Jai < Jsi (in the CiXlCX$'XQ3 system of coordinates), while o and k’ are the vectors of the 

absolute instantaneous angular velocity of the i-th body and its gyrostatic momentum; ri ri+l 
@*+I = A$’ hi 

to the point 

is a constant) are the radius vectors of the points Oi and Oi+l with respect 

C ,; 

Xj4 

oji, kji, elf (j = 1,X,3) are the projections of the vectors wit k’, ri onto the 

axes. If the last body S, has no fixed point, we shall assume that h" = 0. 

Let the action of the body St-1 on Si be characterized by the force R’; then the action 

of si+r on St is characterized by the force Ri+l. 

Using the theorem on the variation of the angular momentum in relative motion about the 

centre of mass, we obtain for the i-th body the equation 

@'.o" + @i x (@ .oi + k")=r' x (Ri-kh'Ri+') 

Projecting this equation onto the z,', ' ma v 53 f axes, we obtain the equations 

J,'CJ? + (I,'- I,')w,'o,'+ k,C.0,'- k,'o,'= (1.1) 

e,'(R,'- h'Rp)- e,'(R,'- h*Rp) (12.3) 

Assume that we have the conditions 

e2' = 0, k,’ = 0 0.2) 

On multiplying the first and third equations of (1.1) by e,’ and es4 respectively, and 

adding term by term, we obtain the relations 

dV’/dt + oz* [(I,’ - I,‘) q’e,’ + (I,’ - I,‘) maieli + 
k,‘e,’ - kl’eai] = 0 

from which, under the conditions 

(Js’ - JI’) e8* 

JlfQi 

= (It’- J,*) eli 

J*‘e*’ 
(4.3) 
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we obtain the invariant relations 
v' = 0 (1.4) 

In short, under conditions (1.2), (1.3), our system of bodies admits of the system of 
invariant relations (1.4). Another statement of this result is possible. The chain of bodies 

admits of the system of invariant relations (1.4) if the centre of mass Ci of each body Sj 

and the hinges Oi, Oi+l connecting it with the adjacent bodies (or witll tile fixed point) lie 

on the perpendicular to the circular section of its central gyrational ellipsoid, and the 

gyrostatic moment k’ lies in the plane perpendicular to this circular section. 
Hence, for n=l, we obtain Sretenskii's invariant relation /2/ for the integrability 

of the equations of motion of a heavy gyrostat, and from this, under the auxiliary conditions 

k,’ = k,’ = 0, Hess's invariant relation /l/. For two bodies, one of which is weightless, 

a relation of type (1.4) is given in /3/. 

2. Let us analyse the motion of our chain when relations (1.4) hold. We shall assume 

for simplicity that all the k’ = 0. 
For each si we introduce the auxiliary orthogonal system of coordinates CtY1'Y,iY,i, in 

which the y,’ axis coincides with the x2' axis, and the y,' axis passes through the point 

o*Ci”i+** 

We denote the unit vectors of this system by 81 1 i &,i, Ebi, putting 

er'=C@i+i/ )C@i+l 1, ri=IOiCil, pi"\c,Oi+i\ 

Further, let 9,' be the projections of the angular velocity vector w' onto the YJ' axes, 

and A,,', A,,' = J;, &sfr A,’ be the non-zero components of the inertia tensor 8' in the 

CiY,iY,iY,' system of coordinates. The equations of motion are then 

@‘.~‘*+oix @‘.o”=-_e,x (r’Ri+piR’+l) 

I 

A,,’ 0 -A,,’ 
ai = Q,iel’ + Die; + Qr’Qi, 0” = 0 A,,’ 0 

- A,,’ 0 A,,’ 

In the ciYi'Y,'Y,' system, relations (1.4) can be written as 

A,,‘Q,’ - A,,fB, = 0 

(2.4) 

(2.2) 

(2.3) 

Let 'pi be the angles of rotation of the bodies about the yri axes, and let qi,6, be the 

Euler angles defining the position of the step-line U,O,. ..O,+, relative to the O,ryz co- 
ordinate system. we then have for Qj' the expressions 

Qr~=~i'cos6*+'p*', 62,i= q'l'sin 6i sin cpi + 6,' cos vi (2.4) 

Q,i=q+‘sin6tcoscpi - 6,‘sin~ 

The conditions thatthe straight lines through the points OIrCirOi+l be perpendicular to 

the planes of the circular sections of the central gyrational ellipsoids, leadtothe relations 

A,,‘A,,’ = AlliABai - A,,iA,,f, A,,‘= J,” (2.5) 

The expression for the kinetic energy of the system 

T.&- (m,u,* +- A,,%?,‘* + A,,Q,‘2 + A,,‘B,” - 2A,,‘S&‘Q,‘) 
i-1 

can be written, using (2.3) and (2.5), as 

(2.6) 

(miand vi are the mass and velocity of the centre ofmassof the i-th body). 
We conclude from this that the kinetic energy of the chain of rigid bodies is the same, 

in the light of relations (2.3), as the kinetic energy of a chain of rods with masses equal 
to the masses ofthe respective rigid bodies, and the central moments of inertia J,‘. 

From (2.6), using (1.4), we obtain the relation 

T == T ($1. 61, . . .,Q,,, 6,, *I’, a,‘, . . . . qn’, %,‘) (2.7) 

Now consider the potential energy n of the chain of rigid bodies. It is the same as 
the potential energy of our chain of rods and is given by 
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n = l-I (&, . . ., 6,) (2.8) 
For our chain of bodies the Lagrange function 15 = T-II is given, using (2.7) and (2.8) 

by 
L==($,, 61, . . ., +*t 6”, Ql’t a,‘, . * *v %I’7 ~Tl’) w? 

In view of (2.4), we can write relations (2.3) as 

A,,'(cp,'+ 1#~'cos6J+ A,,f(6i'sinrpi -$i'sin6f coscpf)=O (2.10) 

We conclude as a result that, when relations (2.3) hold, the motion of the chain of heavy 
rigid bodies is made up of two motions: 1) the motion of the step-line U,O,...O,+, as a 

chain of heavy rods with masses equal to the masses oftherespective bodies, and central mo- 
ments of inertia Jz’, and 2) rotations of a body about the links of the step-line. The first 
motion is given by the Lagrange equations with Lagrange function (2.9), and the second by 
Eqs.(2.10). 

3. We will indicate the simplest classes of motion of the chain of heavy bodies with 
one fixed end. Assume initially that 

61 = flio* ei' = 0, qi = ot, ljJi' = 0 = const (3.1) 

Here, 61 is arbitrary, while the 81, are given by the equations which are obtained from 
the Lagrange equations with Lagrange function (2.9) after substituting in them the values (3.1). 

Relations (3.1) describe uniform rotations about the vertical with angular velocity o 

of the step-line O,O,...O, as a rigid body, all the links of which lie in the same vertical 
plane and make angles ei =13~, with the vertical. 

When (3.1) are satisfied, Eqs.(2.10) take the form 

'p' = 0 (Ui + bi COS Cpi) 

~i = -CO&~,, bi = (A,,'/A,,')sin61, 
(3.2) 

Hence we obtain the equations for 'pi =~&(t): 

where Di are constants 
we see from (3.3) 

and a loxodrome /4/ if 
A second class of 

I 
@i ,b$- bt arctgl/<T ’ 

aia > bia 

ot + Di = cPj-fbt-ai" 
u$+J/bt”-“i8 ’ 

aia < bia 
(3.3) 

Qi = (ai - bi)tg ‘Ia ‘pi 

of integration. 
th;t>it; equation 'pi = 'pi (t) g' lves a zig-zag line /4/ if aiz > biaT 

I . 
possible motions of the chain of bodies with one fixed endisas follows. 

The Lagrange equations giving the motions of the chain have the solutions 

q\li = 0, vi’ = 0, bi = 6* (t), 61’ = 61’ (t), 61 (0) = 610, (3.4) 
6,’ (0) = fii,’ 

where the functions 61 =6i (t) are given by the equations which are obtained from the Lagrange 
equations with Lagrange function (2.9) after substituting the values (3.4) in them. 

Relations (3.4) describe the oscillatory motions of an n-link rod pendulum in the 
vertical plane, The rotatory motions of the bodies about the links are given by the quadratures 

(CPM are the initial values of the angles cpi) 

These two classes of motions of a chain of I:ess gyroscopes, supplement the class of 

regular precessions of a system of Lagrange gyroscopes /5/, and thereby extend our ideas of 
the possible types of motions of couplings of rigid bodies. 

Our results can be extended to a system of heavy bodies consisting of any number of chains 
of such bodies, provided that each body has not more than two spherical hinges, clamping it 
with other bodies or with a fixed point. 

4. Let us dwell on the conditions for the first type of motions to exist. On the basis 
of (3.1) and (3.21, relations (2.4) can be written in the vector form 

o'=cp,'el" + WV (4.1) 
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v= costii,,Fli sin 7Yi, sin <pi~2i + sir16i,,c0s (pie:,' 

Here, 6i, are the angles betweenthovectors sli and 6, while the time-dependence of Vi 

is given by (3.3). The motions for which the angular velocity vector has the form (4.1) art: 

called semireqular precessions /6/. Let us find the conditions for motions of this type to 

exist of Hess gyroscopes. For this, we add to Eqs.12.1) the equations of motion of the 
centre of mass 

~)l~v~'= -mm,gv _(~ R' _ Ri+' (4.2) 

where q is the acceleration due to gravity. Usinq the equations 

de’/dt=o(v x Eli), dzEIi/dt” = I$ (cos IY,,v - cli) 

we obtain from (4.2): 

1-l 

mi {gv + oa [a (rk -1 p”) (cos fh \’ - Elk) - 

r-i ccos fii,v _ E,“)]} = Ri - RiQ 

We resolve the vector elk, k<i, in the basis Sll and Y 

e,"~[sin(6,,- tiku)v 4 sin@)kUsli]sin-12YiU 

we then have from (4.3): 

(4.3) 

( ,4 ,‘t ) 

Consider Eqs. (2.1). Assume as in /6/ that eli x R’+’ = O- We introduce the notation for 

Hji : 

R’ = H,‘E,~ + R,‘esi T Rgi~ai (4 5) 

After substituting (4.1) and (4.5) into (2.1) and using (3.2), we obtain 

R,‘/sin cpi = K,i/cos ‘pi = - (d/ri) A,,{ sin fiio cos Bi, (4.6) 

We return to Eqs.(4.4). We project the left- and right-hand sides of (4.4) onto the 

vectors .sji (i -= 1, 2, 3) and substitute the values (4.6) into the resulting expressions: 

ni[g cos ei, - 0? sin2 6. lrJ (ri - &)]=R,i- RF' (4.7) 

miwv* cos Bi” + rnfi (g + 02 cos 6,,&) -t aPA,,” cos 6i, = 0 

Consider the second group of n equations in (4.7). We assume that it serves to define 

the ri. In this case, we must have two inequalities, the first being 

mi(g -- oiz cos 6&)? > 4oJA,,‘cosZ ei, (4.8) 

which serves as a limit on the parameter A,,‘; the second is costki,<O, which sets a limit on 

the angles eiO. 

The first group of n equations in (4.7) is used to find R,', R1"l; the equations are best 

considered in turn, by first writing them for the n-th body (Rln+l = 0) and finding RI*, then 
finding recurrently the reactions Rx"-', RI"-% , ., R,‘. 

To sum up, assuming that sli x R"+' = 8, the conditions for semiregular precessions of a 
chain of Hess gyroscopes to exist are inequalities COS6i,<O, (4.8), and the second group of 
n equations in (4.71, which enable the parameters rr, rz, ., rn to be found. This approach 
can also be used to study the conditions for the second class of motions in Sect.3 to exist. 
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THE STABILITY OF THE STEADY-STATE MOTIONS OF A SYSTEM WITH 
PSEUDOCYCLICAL COORDINATES* 

V.A. ATANASOV and L.K. LILOV 

The sufficient conditions for the asymptotic stability of the steady-state 
motions of a mechanical system with pseudocyclical coordinates, by means 
of forces acting on these coordinates when dissipation with respect to 
the positional coordinates is present, are formulated. Both gyroscopically 
connected and unconnected systems are considered. The results are used to 
study the possible stabilization of the steady-state motion of an 
unbalanced rotor on a flexible shaft. 

1. Consider a holonomic scleronomic mechanical system with II degrees of freedom. Let q, 
be the generalized coordinates of the system, Q,, p; the generalized velocities and momenta 
(j = 1,. . .( n), T and n the kinetic and potential energies respectively, and L = T-n the 
Lagrange function. Let non-potential forces Qj (j = 1, . . ..n) as well as potential forces, 
act on the system. It will be assumed throughout that there are coordinates qa (always, 
a==m+l,..., n;m<n) which do not appear explicitly in the expression for the Lagrange 
function L (aLit3q, = 0). We also assume that the forces acting on the system are likewise 
independent of these coordinates, which we shall call pseudocyclical. The remaining coordinates 
q# (i = 1, . . ., m) are positional. The generalized non-potential forces & (i = 1, . . ., m) will be 
regarded as dissipative with respect to the generalized velocities; the dissipation may be 
incomplete, or, in particular, may be zero. 

When there are no forces Q ar acting on the pseudocyclical coordinates, the system can 
perform a steady-state motion, in which the potential coordinates qi and the pseudocyclical 
velocities qa’ remain constant, while the pseudocyclical coordinates qu vary linearly with 
time. Our main problem is to find the conditions under which the steady-state motion can be 
stabilized up to asymptotic stability with respect to the positional coordinates and all the 
velocities, by means of forces Qa which act only on the pseudocyclical coordinates. 

This problem was first considered in /l, 2/ when studying mechanical systems when there 
is no dissipation. It was proposed in /3/ to choose the forces Q, in such a way that a pre- 
assigned linear manifold proved to be an invariant asymptotically stable integral manifold 
for the system of linearized differential equations of the perturbed motion. If the linearized 
system is then asymptotically stable on the manifold with respect to the positionalcoordinates, 
these forces Q, then solve the problem of the asymptotic stability of the steady-state motion. 
This method of constructing the stabilizing signals was used to study the stability of any 
steady-state motions of gyroscopically unconnected systems /3/ and the trivial steady-state 
motions of gyroscopically connected systems /4/. Different methods may be used to conctruct 
the stabilizing signals, in particular the method given in /5/. 

However, before trying to construct the stabilizing signals, we must ask the fundamental 
questions as to whether a given steady-state motion can in fact be stabilized by forces which 
act on the pseudocyclical coordinates. Below, we state sufficient conditions for this problem 
to be solvable for any systems with pseudocyclical coordinates when there are dissipative 
forces on the positional coordinates. 
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