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ON A NEW CLASS OF MOTIONS OF A SYSTEM OF HEAVY HINGED RIGID BODIES

G.V. GORR and V.N. RUBANOVSKII

A chain of heavy rigid bodies with one or both ends fixed is considered.

If the arrangement is such that each hinge is at the point of intersection
of the perpendiculars to the planes of circular section of the central
gyratory ellipsoids of adjacent bodies, the equations of motion of each
body can be shown to admit of a Hess invariant relation /1/. A geometrical
interpretation of the motion is given when such invariant relations exist.
The simplest classes of motion are considered, and the conditions for
semiregular precessions to exist are indicated.

l. We consider the motion of a system of heavy hinged gyrostats S, S,, ..., S, (n>1) in
a uniform gravitational field, in which the first gyrostat §; has a fixed point 0,, while the
rest are successively interconnected as a chain by means of ideal spherical hinges 0, ..., 0,

in such a way that the centre of mass of each body and the hinges connecting it to the adjacent
bodies (or to the fixed point) are collinear. The system is then a chain with one fixed end.
We can also consider a similar chain with two fixed ends, in which case we assume that the
last body S, has a fixed point O,,, and that its centre of mass and the points O, and O.u
are collinear.

We introduce the fixed system of coordinates Oyzyz, with z axis having the unit vector
v directed vertically upwards, and the moving systems of coordinates Cixlizgixsi with origins
at the centres of mass C; of the bodies and axes directed along their principal central axes
of inertia. Here and throughout, i=1,...,n )

~ Let @' be the central tensor of inertia of the i-th body with diagonal elements J;'<C

Jt<<J;t (in the C(a'n'zy' system of coordinates), while @ and k' are the vectors of the
absolute instantaneous angular velocity of the i-th body and its gyrostatic momentum; rtopit
(r#+1 = A,"r‘, A' is a constant) are the radius vectors of the points O; and O;; with respect
to the point Cy o', kit e, (j =1, 2, 3) are the projections of the vectors e, ki, r! onto the
z;' axes. If the last body §, has no fixed point, we shall assume that A" = (.

Let the action of the body 8i; on §; be characterized by the force R%; then the action
of S on S; is characterized by the force R¥I,

Using the theorem on the variation of the angular momentum in relative motion about the
centre of mass, we obtain for the i-th body the equation

ei‘m-i + mi < (Bi '(J)i + ki)____'i X (Rz _ kiR“l)
Projecting this equation onto the xli, z,‘, .1:9{ axes, we obtain the equations
et + (.]; - ]?‘) oy'ogt + k', - EACRES 1.1
ezi (Rs' — L‘B;ﬂ) —e' (Rz‘ - A'il"";ﬂ) (123)
Assume that we have the conditions
el =0, ki=0 (1.2)
On multiplying the first and third equations of (1.1) by 81‘ and 63" respectively, and
adding term by term, we obtain the relations
avi/at + o,’ [(]z.i —IYelet + (11— 15 ws'e;’ +
ky'e' — klieall =0
Vie=J0 % + Tioslet + kytet — ky'egt

from which, under the conditions

Usl—sh e _ (= Ta) e (1.3)
J;‘elt J,‘e,i
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we obtain the invariant relations

Vi=0 (1.4)

In short, under conditions (1.2), (1.3), our system of bodies admits of the system of
invariant relations (1.4). BAnother statement of this result is possible. The chain of bodies
admits of the system of invariant relations (1.4) if the centre of mass (; of each body §;
and the hinges O0;, 0;,; connecting it with the adjacent bodies (or with the fixed point) lie
on the perpendicular to the circular section of its central gyrational ellipsoid, and the
gyrostatic moment k* lies in the plane perpendicular to this circular section,

Hence, for n =1, we obtain Sretenskii's invariant relation /2/ for the integrability
of the equations of motion of a heavy gyrostat, and from this, under the auxiliary conditions
kit =k =0, Hess's invariant relation /l1/. For two bodies, one of which is weightless,

a relation of type (1.4) is given in /3/.

2. Let us analyse the motion of our chain when relations (1.4) hold. We shall assume
for simplicity that all the k' = 0.

For each §; we introduce the auxiliary orthogonal system of coordinates  Cu'ye'yst, in
which the 1/2i axis coincides with the z,' axis, and the yl‘ axis passes through the point
0,C0:4.

We denote the unit vectors of this system by sli, G,i, a,;i , putting
l"1‘-‘=C10i4~1/|c¢0i+1|‘ r'=10,,}, p'=|C0in|
Further, let \jS be the projections of the angular velocity vector @' onto the y,i axes,

and Ayt Ayt =7}, A4, Ay be the non-zero components of the inertia tensor 6% in the
Ciy'y,'yyY  system of coordinates. The equations of motion are then

8h.e + af X 0.0l =—z; x (MR 4+ p'R™Y (2.1
Aui 0 - Alai

o' =0, + Qe + Q'es’, Oi= 0 A’ 0 } (2.2)
- Awt 0 Aas1 !

In the C[yliygiysi system, relations (l1.4) can be written as
Ayt — 4,'Q,=0 (2.3)
Let ¢; be the angles of rotation of the bodies about the yli axes, and let 1;, ¥; Dbe the

Euler angles defining the position of the step-line 0,0,...0,;; relative to the Oyzyz  co-
ordinate system. We then have for Qj‘ the expressions

QI‘ =1 cos ¥, + ¢, Q= sin;sing; + ¥ cos g, (2.4)
Qgi ==1p;" sin &; cos g; — ¥," sin ¢,

The conditions that the straight lines through the points 0, C;, O;,; be perpendicular to
the planes of the circular sections of the central gyrational ellipsoids, lead to the relations

Aty = A4 Ay — A4y Ayt =T (2.5)
The expression for the kinetic energy of the system

n

T = _;—Z (muw® 4 Auigxia + Azziniz + A:aaiQaiz - 2A13i91i93i)

i=]

can be written, using (2.3) and (2.5), as

T =g 3 m 4 1@ 4 Q) (2.6)

=1

(m;and v; are the mass and velocity of the centre of mass of the i-th body).

We conclude from this that the kinetic energy of the chain of rigid bodies is the same,
in the light of relations (2.3), as the kinetic energy of a chain of rods with masses equal
to the masses of the respective rigid bodies, and the central moments of inertia Jz".

From (2.6), using (l1.4), we obtain the relation

T = T (g, 840 o o s W Bs By B1s - v s By ) (2.7)

Now consider the potential energy [ of the chain of rigid bodies. It is the same as
the potential energy of our chain of rods and is given by
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D=M0@,..., %) (2.8)
For our chain of bodies the Lagrange function L =T —II is given, using (2.7) and (2.8)

by «on- .5 -
L=L 0y B - v b B B0 B 0’y B2 2.9)

In view of (2.4), we can write relations (2.3) as
Ap' (9 + ¥y cos ) + Agy* (85" sing, — " sin ¥y cos gy) =0 (2.10)

We conclude as a result that, when relations (2.3) hold, the motion of the chain of heavy
rigid bodies is made up of two motions: 1) the motion of the step-line 0,0,...0p4, as a
chain of heavy rods with masses equal to the masses of the respective bodies, and central mo-
ments of inertia Jzi, and 2) rotations of a body about the links of the step-line. The first
motion is given by the Lagrange equations with Lagrange function (2.9), and the second by
Egs. (2.10).

3. We will indicate the simplest classes of motion of the chain of heavy bodies with
one fixed end. Assume initially that

O, =04, 0" =0, ¢; = of, ¢ = o = const (3.1)

Here, ® is arbitrary, while the ®;, are given by the equations which are obtained from
the Lagrange equations with Lagrange function (2.9) after substituting in them the values (3.1).
Relations (3.1) describe uniform rotations about the vertical with angular velocity 0]
of the step-line 0,0,...0, as a rigid body, all the links of which lie in the same vertical
plane and make angles ¢; =&;, with the vertical.
when (3.1) are satisfied, Egs.(2.10) take the form
9 = o (a; + bicos @) (3.2)
a; = —costy, b; = (Ay5*/Ay,")sin By,

Hence we obtain the equations for ¢; = @; (t):

2 arct, —m—‘— a;® > b
t -+ D, = Voal—bt gV“ia—bia o '
CUERTN v L, ¢9)
y a .
Vori—af ! D+ YbF—e? ' '

D; = (a; — bitg Yy s

where D; are constants of integration.
We see from (3.3) that the equation ¢; = ¢;(!) gives a zig-zag line /4/ if a;? > b2,
and a loxodrome /4/ if a;? <<b?,
A second class of possible motions of the chain of bodies with one fixed end is as follows.
The Lagrange equations giving the motions of the chain have the solutions

P =0,9 =0, 0 =98 (), ¢ =94, (¢), 8, (0) =y, 3.4)
4 (0) =9,

where the functions ®; =®; () are given by the equations which are obtained from the Lagrange
equations with Lagrange function (2.9) after substituting the values (3.4) in them.

Relations (3.4) describe the oscillatory motions of an n-link rod pendulum in the
vertical plane. The rotatory motions of the bodies about the links are given by the quadratures
(9o are the initial values of the angles ;)

@; i
g o = Aw- (8, (1) — By)

i i
sin g, Au

%10

These two classes of motions of a chain of Hess gyroscopes, supplement the class of
regular precessions of a system of Lagrange gyroscopes /5/, and thereby extend our ideas of
the possible types of motions of couplings of rigid bodies.

Our results can be extended to a system of heavy bodies consisting of any number of chains
of such bodies, provided that each body has not more than two spherical hinges, clamping it
with other bodies or with a fixed point.

4. Let us dwell on the conditions for the first type of motions to exist. On the basis
of (3.1) and (3.2), relations (2.4) can be written in the vector form

o' =gq/ e’ + ov (4.1)
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v=cos¥;,&° - sind;, sinqg;e,’ + sind;, cos ¢;e5"

Here, U;, are the angles between the vectors gli and ¥, while the time-dependence of @i
is given by (3.3). The motions for which the angular velocity vector has the form (4.1) are
called semiregular precessions /6/. Let us find the conditions for motions of this type to
exist of Hess gyroscopes. For this, we add to Egs. (2.1) the equations of motion of the
centre of mass

mvy =-—mygv -- R — R (4.2)
where g is the acceleration due to gravity. Using the equations
de'fdt == (v % g,), d2e;’/dt? = w2 (cos B; v — &)
we obtain from (4.2):
i1
mi gy + o | 3 (rF 4 p¥) (cos v —&,") - (4.3)

k=1

i (cos BV — £,°)] } =R} — Ri"
We resolve the vector alk r k<i, in the basis 911 and v
g," = [sin (;, — To) v 4 sin Gy, 'fsin 18y,
We then have from (4.3):

m (e 4 w?eos Oy, (FF+ SHIv — w2 (- B g} =R"'— R¥! (4.4)

-]
, 1 Tk
PO S, - in O,
; Smﬁmz_‘(r - p7) sin iy,
k=1

Consider Egs.(2.1). Assume as in /6/ that g,' x R"! = 0. We introduce the notation for
Rt
R'=R'e," + R,%s,' ~ R,'e,} (4.5)
After substituting (4.1) and (4.5) into (2.1) and using (3.2), we obtain
R,/sin q; = R,'fcos g; = — (0?/r') 4,5 sin 8y, cos By, (4.6)
We return to Egs. (4.4). We project the left- and right-hand sides of (4.4) onto the
vectors &;' (j:=1,2,3) and substitute the values (4.6) into the resulting expressions:
m; g cos ¥,y — w2 sin? &, (r! + 3,)]= R,* — R? (4.7)
mw?r® cos Oy, + myrt (g + ©® cos §,5;) + 024y, cos ¥y =0
Consider the second group of n equations in (4.7). We assume that it serves to define
the r'. In this case, we must have two inequalities, the first being
m (g -+ w?cos V;y2))? > bo Ay’ cos? By (4.8)

which serves as a limit on the parameter Ad,'; the second is c0s¥;y3<<0, which sets a limit on
the angles §;,. .

The first group of n equations in (4.7) is used to find Rli, R{**'; the equations are best
considered in turn, by first writing them for the n-th body (R, = 0) and finding R,", then
finding recurrently the reactions Ry"Y, R™2, ... R

To sum up, assuming that gli % R™ == (, the conditions for semiregular precessions of a
chain of Hess gyroscopes to exist are inequalities cos®;,<<0, (4.8), and the second group of
n equations in (4.7), which enable the parameters !, r? ..., r® to be found. This approach
can also be used to study the conditions for the second class of motions in Sect.3 to exist,
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THE STABILITY OF THE STEADY-STATE MOTIONS OF A SYSTEM WITH
PSEUDOCYCLICAL COORDINATES™

V.A. ATANASOV and L.K. LILOV

The sufficient conditions for the asymptotic stability of the steady-state
motions of a mechanical system with pseudocyclical coordinates, by means
of forces acting on these coordinates when dissipation with respect to

the positional coordinates is present, are formulated. Both gyroscopically
connected and unconnected systems are considered. The results are used to
study the possible stabilization of the steady-state motion of an
unbalanced rotor on a flexible shaft.

1. consider a holonomic scleronomic mechanical system with n degrees of freedom. Let g
be the generalized coocrdinates of the system, g¢;, p; the generalized velocities and momenta
G =1,...,n), T and =n the kinetic and potential energies respectively, and L =7 — n the
Lagrange function. Let non-potential forces @; (j = 1, ..., n) as well as potential forces,
act on the system. It will be assumed throughout that there are coordinates ¢, (always,
a=m-+1,...,nm<n) which do not appear explicitly in the expression for the Lagrange
function L (0L/3q, = 0). We also assume that the forces acting on the system are likewise
independent of these coordinates, which we shall call pseudocyclical. The remaining coordinates
@ (i=1,...,m) are positional. The generalized non-potential forces @ (i=1,...,m) will be
regarded as dissipative with respect to the generalized velocities; the dissipation may be
incomplete, or, in particular, may be zero.

When there are no forces g, acting on the pseudocyclical coordinates, the system can
perform a steady-state motion, in which the potential coordinates ¢; and the pseudocyclical
velocities ¢, remain constant, while the pseudocyclical coordinates ¢, vary linearly with
time. Our main problem is to find the conditions under which the steady-state motion can be
stabilized up to asymptotic stability with respect to the positional coordinates and all the
velocities, by means of forces @, which act only on the pseudocyclical coordinates.

This problem was first considered in /1, 2/ when studying mechanical systems when there
is no dissipation. It was proposed in /3/ to choose the forces @, in such a way that a pre-
assigned linear manifold proved to be an invariant asymptotically stable integral manifold
for the system of linearized differential equations of the perturbed motion. If the linearized
system is then asymptotically stable on the manifold with respect to the positional coordinates,
these forces @, then solve the problem of the asymptotic stability of the steady-state motion.
This method of constructing the stabilizing signals was used to study the stability of any
steady-state motions of gyroscopically unconnected systems /3/ and the trivial steady-state
motions of gyroscopically connected systems /4/. Different methods may be used to conctruct
the stabilizing signals, in particular the method given in /5/.

However, before trying to construct the stabilizing signals, we must ask the fundamental
questions as to whether a given steady-state motion can in fact be stabilized by forces which
act on the pseudocyclical coordinates. Below, we state sufficient conditions for this problem
to be solvable for any systems with pseudocyclical coordinates when there are dissipative
forces on the positional coordinates.
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